http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate2258.htmlARTICLE PREVIEW
view full access options
NATURE CLIMATE CHANGE |
Heavier summer downpours with climate change revealed by weather forecast resolution model
The intensification of precipitation extremes with climate change1 is of key importance to society as a result of the large impact through flooding. Observations show that heavy rainfall is increasing on daily timescales in many regions2, but how changes will manifest themselves on sub-daily timescales remains highly uncertain. Here we perform the first climate change experiments with a very high resolution (1.5 km grid spacing) model more typically used for weather forecasting, in this instance for a region of the UK. The model simulates realistic hourly rainfall characteristics, including extremes3, 4, unlike coarser resolution climate models5, 6, giving us confidence in its ability to project future changes at this timescale. We find the 1.5 km model shows increases in hourly rainfall intensities in winter, consistent with projections from a coarser 12 km resolution model and previous studies at the daily timescale7. However, the 1.5 km model also shows a future intensification of short-duration rain in summer, with significantly more events exceeding the high thresholds indicative of serious flash flooding. We conclude that accurate representation of the local storm dynamics is an essential requirement for predicting changes to convective extremes; when included we find for the model here that summer downpours intensify with warming.
At a glance
Figures
First | 1-4 of 4 | Last
left
Figure 1
Figure 2
Figure 3
Figure 4
right
References• Author information• Supplementary information
Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).
ADSISIArticle
Min, S-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 376–379 (2011).
CASADSArticle
Kendon, E. J., Roberts, N. M., Senior, C. A. & Roberts, M. J. Realism of rainfall in a very high resolution regional climate model. J. Clim. 25, 5791–5806 (2012).
Article
Chan, S. C. et al. The value of high-resolution Met Office regional climate models in the simulation of multi-hourly precipitation extremes. J. Clim.
http://dx.doi.org/10.1175/JCLI-D-13-00723.1 (in the press).
Hanel, M. & Buishand, T. A. On the value of hourly precipitation extremes in regional climate model simulations. J. Hydrol. 393, 265–273 (2010).
Article
Gregersen, I. B. et al. Assessing future climatic changes of rainfall extremes at small spatio-temporal scales. Climatic Change 118, 783–797 (2013).
Article
Fowler, H. J. & Ekström, M. Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol. 29, 385–416 (2009).
Article
Lenderink, G. & van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci. 1, 511–514 (2008).
CASADSISIArticle
Burt, S. Cloudburst upon Hendraburnick Down: The Boscastle storm of 16 August 2004. Weather 60, 219–227 (2005).
ADSArticle
Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nature Geosci. 6, 181–185 (2013).
CASADSArticle
Brockhaus, P., Lüthi, D. & Schär, C. Aspects of the diurnal cycle in a regional climate model. Meteorol. Z. 17, 433–443 (2008).
Article
Hohenegger, C., Brockhaus, P. & Schär, C. Towards climate simulations at cloud-resolving scales. Meteorol. Z. 17, 383–394 (2008).
Article
Lean, H. W. et al. Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Weath. Rev. 136, 3408–3424 (2008).
ADSArticle
Langhans, W., Schmidli, J., Fuhrer, O., Bieri, S. & Schär, C. Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and cloud-resolving resolutions. J. Appl. Meteorol. Clim. 52, 1490–1510 (2013).
Article
Prein, A. F. et al. Added value of convection permitting seasonal simulations. Clim. Dynam. 41, 2655–2677 (2013).
ADSArticle
Mahoney, K., Alexander, M., Scott, J. D. & Barsugli, J. High-resolution downscaled simulations of warm-season extreme precipitation events in the Colorado Front Range under past and future climates. J. Clim. 26, 8671–8689 (2013).
Article
Attema, J. J., Loriaux, J. M. & Lenderink, G. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model. Environ. Res. Lett. 9, 014003 (2014).
ADSArticle
Wakazuki, Y., Nakamura, M., Kanada, S. & Muroi, C. Climatological reproducibility evaluation and future climate projection of extreme precipitation events in the Baiu Season using a high-resolution non-hydrostatic RCM in comparison with an AGCM. J. Meteorol. Soc. Jpn 86, 951–967 (2008).
Article
Knote, C., Heinemann, G. & Rockel, B. Changes in weather extremes: Assessment of return values using high resolution climate simulations at convection-resolving scale. Meteorol. Z. 19, 11–23 (2010).
Article
Trapp, R. J., Robinson, E. D., Baldwin, M. E., Diffenbaugh, N. S. & Schwedler, B. R. J. Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Clim. Dynam. 37, 677–688 (2011).
ADSArticle
Hohenegger, C., Brockhaus, P., Bretherton, C. S. & Schär, C. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection. J. Clim. 22, 5003–5020 (2009).
ISIArticle
Pan, L-L. et al. Influences of climate change on California and Nevada regions revealed by a high-resolution dynamical downscaling study. Clim. Dynam. 37, 2005–2020 (2011).
Article
Golding, B. W. Nimrod: A system for generating automated very short range forecasts. Meteorol. Appl. 5, 1–16 (1998).
ADSArticle
Harrison, D. L., Driscoll, S. J. & Kitchen, M. Improving precipitation estimates from weather radar using quality control and correction techniques. Meteorol. Appl. 7, 135–144 (2000).
ADSArticle
Walters, D. N. et al. The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci. Model Dev. 4, 919–941 (2011).
ADSArticle
Wilkinson, J. M. et al. Improved microphysical parametrization of drizzle and fog for operational forecasting using the Met Office Unifed Model. Q. J. R. Meteorol. Soc. 139, 488–500 (2013).
Article
Li, D. & Shine, K. P. A 4-dimensional Ozone Climatology for UGAMP Models. Technical Report 35 (UGAMP 1995)
Collins, W. J. et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).
Article
Bower, K. N. & Choularton, T. W. A parametrisation of the effective radius of ice free clouds for use in global climate models. Atmos. Res. 27, 305–339 (1992).
Article
Best, M. J. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev. 4, 595–640 (2011).
Article